نوع مقاله : مقاله پژوهشی
نویسندگان
1 عضو هیات علمی و استادیار دانشگاه آزاد واحد تهران جنوب
2 عضو هیات علمی دانشگاه آزاد واحد تهران جنوب
3 دانشجوی دکترا حسابداری دانشگاه شهید بهشتی
4 کارشناس ارشد حسابداری دانشگاه شهید بهشتی (نویسنده مسئول)
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The topic dividend policy is one of the most leading issues in modern corporate finance affecting the firm value. The results of linear methods and regression could not satisfy researchers in forecasting of financial issues such as dividend policy.
In this paper, we present a comparative analysis of the forecasting accuracy of univariate and multivariate Artificial Neural Network using a sample of 183 companies listed in the Tehran Stock Exchange through for the years 2011_2015.
This study shows that the application of the multivariate neural network model results in forecasts that are more accurate than Univariate neural network forecasting models. Our findings show that forecast of a multivariate ANN incorporating Marsh and Merton (1987) variables is more accurate than univariate ANNs. Therefore, based on the results of the study we suggest that shareholders, investors and other stakeholders use multivariate ANNs to predict dividend policy of companies listed in Tehran Stock Exchange.
کلیدواژهها [English]