* آهنگری، م. (1390). به کارگیری درخت تصمیم جهت پیش بینی شرکت های ورشکسته و غیر ورشکست شده پذیرفته شده در بورس اوراق بهادار.
* انواری رستمی، ع. عموقین، ر.،(1396). تصمیمگیری در مسائل مالی. تهران: انتشارات ترمه
* اسماعیل زاده مقری، ع.، شاکری، ه. (1394). پیش بینی درماندگی مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از شبکه بیزی ساده و مقایسه آن با تحلیل پوششی داده ها. مهندسی مالی و مدیریت پرتفوی، 6(22)، 1-28.
* انواری رستمی، ع.، عموقین، ر.(1396). تصمیمگیری در مسائل مالی. تهران:انتشارات ترمه
* حسینی، م.، رشیدی، ر . (1392). پیش بینی احتمال ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از مدل رگرسیون لجستیک. مجله پژوهش های حسابداری مالی، 5(17)، 105-130.
* شباهنگ، ر. (1379). مدیریت مالی جلد 1. انتشارات سازمان حسابرسی، 92(4).
* فدایی نژاد، م.، اسکندری، ر. (1390). طراحی و تبیین مدل پیشبینی ورشکستگی شرکتها در بورس اوراق بهادار تهران، تحقیقات حسابداری، 1(9).
* منصورفر، غ.، غیور، ف. (1394). توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی. پژوهش های تجربی حسابداری مقاله 10، 5(1).
* منصورفر، غ.، غیور، ف. (1395). اثر تعدیل گر کیفیت سود در پی بینی درماندگی مالی شرکت های پذیرفته شده بورس اوراق بهادار تهران مقاله 2، 4(4).
* موسوی شیری، م.، طبرستانی، م. (1388). پیش بینی درماندگی مالی با استفاده از تحلیل پوششی داده ها. تحقیقات حسابداری و حسابرسی، 1(2) . 2-8.
* مهرانی، س.، کرمی، ک. (1383). استفاده از اطلاعات تاریخی مالی و غیرمالی جهت تفکیک شرکت های موفق و ناموفق. بررسی های حسابداری و حسابرسی، 11(1).
* Alfaro, E & Garcia, N. (2008). Bankruptcy forecasting: An empirical comparison of Adaboost and neural networks. Decision Support Systems, 45. 110-122.
* Altman, E.I. (2000), Predicting financial distress of companies: Revisiting the A-score and Zeta Models, Stern School of Business, New York University.
* Barak. A.Z. (2010). Cash flow ration vs. accruals ratios: Empirical research on incremental information content. The Business Review, 15, 206-213.
* Beaver, W.H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111.
* Cantoni, Emiliano and Silvi, Riccardo, Financial Distress and Ratios Informative Capability: Empirical Evidence from the Italian Food & Beverage Industry (October 8, 2010). Available at:
http://dx.doi.org/10.2139/ssrn.1012651
* Kouki, M. & Elkhaldi, A. (2011). Toward a predicting model of firm bankruptcy: Evidence from the Tunisian context. Middle Eastern Finance and Economics, 14. 26-43.
* Murtaza, M., & Shah, J. (2000). A neural network based clustering procedure for bankruptcy prediction. American Business Review, 18 (2), 80-86.
* Ohlson, J.A. (1980). Financial Ratios and the probabilistic prediction of Bankruptcy. Journal of Accounting Research, 18: 109-131.
* Qunfeng Liao, Seyed Mehdian. (2016). Measuring financial distress and predicting corporate bankruptcy: An index approach.
9(1).
* Sun, L & Shenoy, P. (2007). Using Bayesian networks for bankruptcy prediction. European Journal of Operational Research, 180(2): 738-753.