* زندیه، مصطفی. امیری، مقصود و ربانی، معصومه (1392). «تأثیر متوازنسازی مجدد مدل چند دورهای پرتفوی سرمایهگذاری، بر روی بازدهی پرتفوی، با استفاده از الگوریتم فرا ابتکاری»، پایاننامه کارشناسی ارشد، موسسه آموزش عالی غیرانتفاعی و غیردولتی رجاء قزوین.
* فدایی نژاد، محمد اسماعیل و بنائیان، حمید (1389). «طراحی مدل متوازنسازی مجدد پرتفوی سرمایهگذاری با در نظر گرفتن هزینههای معاملاتی بر مبنای رویکرد تصمیمگیری فازی»، هشتمین کنفرانس بینالمللی مدیریت، گروه پژوهشی آریانا.
* Algoet, P. Cover, T. (1988). "Asymptotic optimality and asymptotic equipartition properties of log-optimum investment". The Annals of Probability
* Arguin, L.P. Bovier, A. Kistler, N. (2013). “The extremal process of branching Brownian motion”, Probability Theory and Related Fields, 535–574
* Das, S. Goyal, M. (2012). "Discrete-Time Log-Optimal Portfolio Rebalancing: A Scalable Efficient Algorithm". IEEE Computational Intelligence for Financial Engineering and Economics
* Das, S. (2014). "Scalable, Efficient and Optimal Discrete-Time Rebalancing Algorithms for Log-Optimal Investment Portfolio". Theses and Dissertations. Paper 455.
* Fenton, L. (1960). "The sum of log-normal probability distributions in scatter transmission systems". Communications Systems, IRE Transactions on 8 (1)
* Ha, Y. (2017). “Review of online portfolio selection: Performance comparison with transaction costs including market impact costs”. Ha, Youngmin, Review of Online Portfolio Selection: Performance Comparison with Transaction Costs Including Market Impact Costs. Available at: SSRN: https://ssrn.com/abstract=2763202
* Hull, J. (2011). "Options, Futures, and Other Derivatives". Prentice Hall, New Jersey
* Jung, J. Kim, S. (2016). “Developing a dynamic portfolio selection model with a self-adjusted rebalancing method”, Journal of the Operational Research Society, 1-14
* Kaznachey, D. Das, S. Goyal, M. (2012). “Computing Optimal Rebalance Frequency for Log-Optimal Portfolio", journal of Quantitative Finance
* Kritzman, S. Page, S. (2009). "Optimal rebalancing: a scalable solution". Journal of Investment Management 7 (1)
* Kohler, A. Wittig, H. (2014). "Rethinking Portfolio Rebalancing: Introducing Risk Contribution Rebalancing as an Alternative Approach to Traditional Value-Based Rebalancing Strategies”, The Journal of Portfolio Management. 34-46
* Liu, J. Longstaff, F. Pan, J. (2003). "Dynamic asset allocation with event risk". Journal of Finance
* Luenberger, D. (1998). "Investment science". Oxford Univ. Press, New York
* Mittal, G. Mehlawat, M.K. (2014). “A multiobjective portfolio rebalancing model incorporating transaction costs based on incremental discounts”, Optimization: A Journal of Mathematical Programming and Operations Research, 1595-1613
* Merton, R. (1971). "Optimum consumption and portfolio rules in a continuous-time model". Journal of Economic Theory 3 (4)
* Neftci, S. (2000). "An Introduction to the Mathematics of Financial Derivatives". Advanced Finance, Academic Press, London
* Sun, W. Fan, A. Chen, L. Schouwenaars, T. Albota, M. (2006). "Using dynamic programming to optimally rebalance portfolios". The Journal of Trading 1 (2)