اثرات متقابل بازارهای جهانی نفت و طلا بر بورس ایران رهیافت توابع کاپولا –گارچ (GARCH-Copula)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار اقتصاد دانشکده مدیریت دانشگاه آزاد اسلامی واحد رشت، رشت، ایران

2 دانشجوی دکترای مهندسی مالی دانشگاه آزاد اسلامی واحد رشت، ایران (نویسنده مسئول)

چکیده

بررسی رابطه متقابل بین بازارهای جهانی و بورس کشورها یکی از مهمترین موضوعات مورد مطالعه در بازارهای مالی دنیا است. بررسی این رابطه می‌تواند نقش مهمی در تصمیم‌گیری سرمایه‌گذاران ایفا نماید. یک تخمین مناسب از ساختار وابستگی در یک دورة سرمایه‌گذاری نقطة آغازین بسیار مهمی‌ در کنترل ریسک سرمایه‌گذاری است. هدف از این مقاله، مطالعه و بررسی رابطه متقابل ساختار وابستگی در بازدهی بازار بورس تهران و قیمت طلا و نفت جهانی در بازه زمانی سال‌های 2010 تا 2017 به صورت روزانه است. برای این منظور، از رویکرد GARCH-Copula استفاده شده است. نتایج حاکی از وجود رابطه متقابل نامتقارن بین بازدهی‌های مورد بررسی است؛ به نحوی که در این پژوهش، مشخص گردید که تابع کاپولای t- استیودنت بهتر از سایر توابع می‌تواند این ساختار را برای هر دو جفت بازدهی "بورس تهران و بازار طلا" و "بورس تهران و بازار نفت" شناسایی نماید. نتایج نشان می‌دهد بازار بورس تهران به شدت به بازارهای جهانی طلا و نفت در مقادیر حدی وابسته بوده و تغییرات حدی آنها موجب وابستگی شدیدتر این بازارها به یکدیگر می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

The oil and gold global market interaction on the stock market of Iran; the GARCH-Copula approach

نویسندگان [English]

  • Seyed Mozaffar Mirbargkar 1
  • Maryam Borzabadi Farahani 2
1 Assistant Professor in Economy, Department of Management, Rasht Branch, Islamic Azad University Rasht, Iran
2 P.HD. Student, Financial engineering, Department of Management, Rasht Branch, Islamic Azad University Rasht, Iran (Corresponding author)
چکیده [English]

Studying the countries' stock market and global market interaction has been one of the most important research subjects in the global market. Thus, studying the relationships may have a significant role for the decision making of the investors. An appropriate estimation of the dependence structure has been the significant starting point at an investing period, for the investment risk control. The present research aims to study the interaction between dependence structure at Tehran stock market efficiency and the global price of gold and oil, at the period of 2010-2017, on a daily basis. In doing so, GARCH-Copula approach has been applied. The results show the asymmetric mutual relationship between the studied efficiencies. As it can be seen in the present paper, the t-student Copula functions can have a better recognition than other functions for both efficiencies; 'Tehran stock and gold market', and 'Tehran stock and oil market'. The results indicate that the Tehran stock market has been highly dependent to both oil and gold markets, and their threshold changes may lead to a stronger dependency of the markets together.

کلیدواژه‌ها [English]

  • Tehran stock market
  • gold global market
  • oil market
  • GARCH-Copula models
  • dependence structure
*       کشاورز حداد، غلامرضا؛ حیرانی، مهرداد، (1393)، "برآورد ارزش در معرض ریسک با وجود ساختار وابستگی در بازدهی بازارهای مالی: رهیافت توابع کاپولا"، مجله تحقیقات اقتصادی، دوره 49، شماره 4، زمستان 1393، صفحه 869-902
*       کریم‌زاده، مصطفی، (1385)، "بررسی رابطه بلندمدت شاخص قیمت سهام بورس با متغیرهای کلان پولی با استفاده از روش هم‌جمعی در اقتصاد ایران"، فصلنامه پژوهش‌های اقتصادی ایران، شماره 26، سال 1385
*       Agnolucci, P., 2009. Volatility in crude oil futures: a comparison of the predictive ability of GARCH and implied volatility models. Energy Econ. 31, 316–321.
*       Aloui, C., Mabrouk, S., 2010. Value-at-risk estimations of energy commodities via longmemory, asymmetry and fat-tailed GARCH models. Energy Policy 38, 2326–2339.
*       Arouri, M., Hammoudeh, S., Lahiani, A., Nguyen, D.K., 2012a. Long memory and structural breaks in modeling the return and volatility dynamics of precious metals. Q. Rev. Econ. Finance 52 (2012), 207–218.
*       Arouri, M., Lahiani, A., Lévy, A., Nguyen, D.K., 2012b. Forecasting the conditional volatility of oil spot and futures prices with structural breaks and longmemory models. Energy Econ. 34 (1), 283–293.
*       Baillie, R., Bollerslev, T., Mikkelsen, H., 1996. Fractionally integrated generalized
*       autoregressive conditional heteroskedasticity. J. Econ. 74, 3–30.
*       Basel Committee on Banking Supervision, 1996. Supervisory framework for the use of
*       “backtesting” in conjunction with the internal model-based approach to market risk capital requirements. Bank for International Settlements, Basel, Switzerland.
*       Basel Committee on Banking Supervision, 2004. International Convergence of Capital Measurement and Capital Standards. Bank for International Settlements, Basel,Switzerland.
*       Baur, D.G., McDermott, T.K., 2010. Is gold a safe haven? International evidence. J. Bank. Finance34, 1886–1898.
*       Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. J. Econ. 31,307–327.
*       Browne, F., Cronin, D., 2010. Commodity prices, money and inflation. J. Econ. Bus. 62, 331–345.
*       Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50, 987–1008.
*       Engle, R.F., Bollerslev, T., 1986. Modelling the persistence of conditional variances. Econ. Rev. 5, 1–50.
*       Aas, K., & Berg, D. (2009). Models for construction of multivariate dependence a comparison study. European Journal of Finance, 15(7–8), 639–659.
*       Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198.
*       Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6), 716–723.
*       Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Chichester: John Wiley & Son Ltd.
*       Clarke, K. A. (2007). A simple distribution-free test for nonnested model selection. Political Analysis, 15(3), 347–363.
*       de Haan, L., & de Ronde, J. (1998). Sea andwind:Multivariate extremes atwork. Extremes, 1(1), 7–45.       
*       de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. New York: Springer-Verlag. de Haan, L., & Resnick, S. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40(4), 317–337.
*       Demarta, S., & McNeil, A. J. (2005). The t copula and related copulas. International Statistical Review, 73(1), 111–129.
*       J. Dißmann, E.C. Brechmann, C. Czado, D. Kurowicka, Selecting and estimating regular vine copula and application to financial returns, Comput. Statist. Data Anal. 59 (2013) 52–69.
*       Dötz, N., & Fischer, C. (2010). What can EMU countries' sovereign bond spreads tell us about market perceptions of default probabilities during the recent financial crisis? What can EMU countries' sovereign bond spreads tell us about market perceptions of default probabilities during the recent financial crisis? Discussion Paper Series 1: Economic Studies. Deutsche Bundesbank, Research Centre.
*       Eichengreen, B., Hausmann, R., & Panizza, U. (2003). Currency mismatches, debt intolerance and original sin:Why they are not the same and why itmatters. National Bureau of Economic Research, Inc.
*       Embrechts, P., Lindskog, F., & McNeil, A. (2003). 8 modelling dependence with copulas and applications to risk management. In S. T. Rachev (Ed.), Handbook of heavy tailed distribution in finance (pp. 329–384). Elsevier.
*       Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007.
*       Fougères, A. -L. (2003). Multivariate extremes. In B. Finkenstädt, & H. Rootzén (Eds.), Extreme values in finance, telecommunications, and the environment. Chapman and Hall/CRC.
*       Frees, E.W., Carriere, J., & Valdez, E. (1996). Annuity valuation with dependent mortality. The Journal of Risk and Insurance, 63(2), 229–261.
*      Genest, C., & Favre, A. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347–368