نوع مقاله : مقاله پژوهشی
نویسندگان
دانشگاه تربیت مدرس
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
This study presents the new hybrid network of GARCH family and an artificial neural network to predict the Tehran Stock Exchange index during the period of 2008-2017. The existence of long-term memory in the conditional variance of the Tehran stock returns causes use in addition GARCH and EGARCH models with short- memory, long-term memory models. In addition to long-term memory models, considering the better performance of hybrid models in predicting financial data of the Garch family models (short and long-term) are combined with the artificial neural network. Using hybrid models the return of stock index was forecast for the next 10 days and its accuracy was evaluated using the evaluation criteria. The results showed that the hybrid FIEGARCH with the student-t distribution model was more efficient in forecasting return of stock and had a lower forecast error than others models
کلیدواژهها [English]