طراحی مدلی جهت پیش بینی بازده شاخص بورس (با تاکید بر مدل های ترکیبی شبکه عصبی و مدل های با حافظه بلندمدت)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تربیت مدرس

چکیده

این پژوهش به معرفی ‌مدل‌هایی از ترکیب خانواده GARCH و شبکه عصبی مصنوعی، جهت پیش‌بینی بازدهی روزانه شاخص بورس اوراق بهادار تهران طی فاصله زمانی 1396-1387 می‌پردازد. وجود ویژگی ‌حافظه ‌بلندمدت‌ در واریانس ‌شرطی بازدهی شاخص کل بورس موجب شده تا ‌علاوه‌ ‌بر ‌مدل‌های ‌دارای ‌حافظه ‌کوتاه‌مدت GARCH و EGARCH در این ‌پژوهش از مدل‌های FIGARCH و FIEGARCH که دارای ویژگی حافظه بلندمدت هستند؛ استفاده ‌گردد. علاوه بر بکارگیری مدل‌های حافظه کوتاه‌مدت، با توجه به کارایی بهتر مدل‌های ترکیبی (در مقایسه با مدل‌های فردی) در پیش‌بینی داده‌های مالی، در این مطالعه، تمامی مدل‌های خانواده GARCH (اعم از کوتاه‌مدت و بلندمدت) با شبکه عصبی مصنوعی ترکیب و با استفاده از مدل‌های ترکیبی حاصل‌شده، بازده شاخص بورس برای 10 روز آینده به‌صورت گام‌به‌گام پیش‌بینی و دقت آن براساس معیارهای ارزیابی مورد بررسی قرار گرفت. یافته‌های تحقیق نشان داد که مدل‌ ترکیبی FIEGARCH- شبکه عصبی با توزیع تی- استیودنت در پیش‌بینی بازده شاخص کل سهام کارآمدتر و دارای خطای پیش‌بینی ‌کمتری نسبت به سایر مدل‌های رقیب است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a model for forecasting the return of the stock index (with emphasis on neural network combined models and long-term memory models)

نویسندگان [English]

  • Reza Najarzadeh
  • Mehdi Zolfaghari
  • Samad Golami
Tarbiat Modares University
چکیده [English]

This study presents the new hybrid network of GARCH family and an artificial neural network to predict the Tehran Stock Exchange index during the period of 2008-2017. The existence of long-term memory in the conditional variance of the Tehran stock returns causes use in addition GARCH and EGARCH models with short- memory, long-term memory models. In addition to long-term memory models, considering the better performance of hybrid models in predicting financial data of the Garch family models (short and long-term) are combined with the artificial neural network. Using hybrid models the return of stock index was forecast for the next 10 days and its accuracy was evaluated using the evaluation criteria. The results showed that the hybrid FIEGARCH with the student-t distribution model was more efficient in forecasting return of stock and had a lower forecast error than others models

کلیدواژه‌ها [English]

  • Stock market
  • prediction
  • GARCH family
  • neural network
  • hybrid model
  • جباری حسین، نقدی نریمان. رابطه بین ساختار سرمایه و چرخه عمر شرکت. پژوهش‌های حسابداری مالی و حسابرسی ،تابستان1395، دوره 8 ،شماره 30، 139-162
  • سعیدی حسین، محمدی شاپور. پیش‌بینی نوسانات بازده بازار با استفاده از مدل‌های ترکیبی گارچ شبکه عصبی. فصلنامه بورس اوراق بهادار،زمستان 1390،دوره 4،شماره 16، 153-174.
  • طحاری مهرجردی محمدحسین، فاضل یزدی علی، زارعی محمودآبادی محمد. کاربرد تحلیل نا پارامتریک بازه‌ای و پنجره‌ای به‌عنوان مکملی برای ارزیابی کارایی مالی (مطالعه موردی: بانک‌های پذیرفته‌شده در بورس اوراق بهادار تهران). دانش مالی تحلیل اوراق بهادار،پاییز 1392،دوره6،شماره3، 27-44
  • کریمی،محمد شریف, امام وردی, قدرت اله, دباغی, نیشتمان. (1392). ارزیابی و شناسایی مناسب‌ترین گزینه سرمایه‌گذاری دارایی و مالی در ایران (در بازه زمانی1389-1380).اقتصاد مالی،زمستان 1392،دوره7،شماره25، 177-207
  • Anwar, S., & Mikami, Y. (2011). Comparing accuracy performance of ANN, MLR, and GARCH model in predicting time deposit return of Islamic bank. International Journal of Trade, Economics and Finance, 2(1), 44
  • Bildirici, M., & Ersin, Ö. Ö. (2009). Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange. Expert Systems with Applications, 36(4), 7355-7362.
  • Kristjanpoller, W., & Hernández, E. Volatility of main metals forecasted by a hybrid ANN-GARCH model with regressors. Expert Systems with Applications, 2017, 84, 290-300.
  • Kristjanpoller, W., & Minutolo, M. C. A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis. Expert Systems with Applications, 2018,109, 1-11.
  • Lahmiri, S., & Boukadoum, M. An Ensemble System Based on Hybrid‌ EGARCH-ANN with Different Distributional Assumptions to Predict S&P 500 Intraday Volatility. Fluctuation and Noise Letters, 2015, 14(01), 1550001.
  • Lu, X., Que, D., & Cao, G. Volatility forecast based on the hybrid artificial neural network and GARCH-type models. Procedia Computer Science, 2016, 91, 1044-1049.
  • Markowitz, H. Portfolio selection. The journal of finance, 1952, 7(1), 77-91.
  • Monfared, S. A., & Enke, D. Volatility forecasting using a hybrid GJR-GARCH neural network model. Procedia Computer Science, 2014, 36, 246-253
  • Siddiqui, M. U., Abbas, A., AbdurRehman, S. M., Jawed, A., & Rafi, M. Comparison of garch model and artificial neural network for mutual fund's growth prediction. In Computing, Mathematics and Engineering Technologies (iCoMET), 2018 International Conference on, 2018, (pp. 1-7).
  • Güreşen, E., & Kayakutlu, G. (2008, October). Forecasting stock exchange movements using artificial neural network models and hybrid models. In International Conference on Intelligent Information Processing (pp. 129-137). Springer, Boston, MA.
  • Fatima, S. (2017). Comparison of Asymetric Garch models with Artificial Neural Network For Stock predition A case study .Journal of Engoneering and Applied Sience,36(1)
  • Lahmiri, S. (2017). Modeling and predicting historical volatility in exchange rate markets. Physica A: Statistical Mechanics and its Applications, 471, 387-395.
  • Wang, Y. H. (2009). Nonlinear neural network forecasting model for stock index option price: Hybrid GJR–GARCH approach. Expert Systems with Applications, 36(1), 564-570.
  • Lahmiri, S., & Boukadoum, M. (2015). An Ensemble System Based on Hybrid EGARCH-ANN with Different Distributional Assumptions to Predict S&P 500 Intraday Volatility. Fluctuation and Noise Letters, 14(01), 1550001.
  • Monfared, S. A., & Enke, D. (2014). Volatility forecasting using a hybrid GJR-GARCH neural network model. Procedia Computer Science, 36, 246-253.
  • Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014). Volatility forecast using hybrid neural network models. Expert Systems with Applications, 41(5), 2437-2442.
  • Wang, G. (2006). A note on unit root tests with heavy-tailed GARCH errors. Statistics & probability letters, 76(10), 1075-1079
  • Wang, Y. H. (2009). Nonlinear neural network forecasting model for stock index option price: Hybrid GJR–GARCH approach. Expert Systems with Applications, 36(1), 564-570.