بررسی سود آوری استراتژی معامله زوجی بر پایه سیستم حالت-فضای خطی و فیلتر کالمن در بورس اوراق بهادار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی مالی، واحد دهاقان ،دانشگاه آزاد اسلامی ، دهاقان، ایران

2 استادیار، گروه مدیریت، واحد دهاقان ،دانشگاه آزاد اسلامی ، دهاقان، ایران.

چکیده

آربیتراژ آماری که زیر مجموعه معاملات الگوریتمی می باشد اشاره به استراتژی هایی دارد که از برخی روش ها و مدل های آماری به منظور کسب سود از دارایی هایی که به صورت نسبی قیمت گذاری اشتباه شده اند، استفاده می کند. یکی از این استراتژی ها معامله زوجی می باشد. هدف از این تحقیق بررسی سود آوری استراتژی معامله زوجی بر پایه سیستم حالت-فضای خطی و فیلتر کالمن در بورس اوراق بهادار می باشد. استراتژی معامله زوجی پژوهش بر پایه توصیف فرآیند قابل مشاهده یعنی باقی مانده های مدل همجمعی بر حسب یک فرآیند غیر قابل مشاهده با خاصیت بازگشت به میانگین و در ضمن یک مدل حالت-فضا قرار دارد. سود آوری استراتژی معامله زوجی پژوهش بر روی 21 سهم از زیر مجموعه سهام صنایع فرآورده های نفتی و فلزات اساسی از بورس اوراق بهادار تهران در فاصله سال های 1395-1390و با توجه به معیار بازده و نسبت شارپ مورد بررسی قرارگرفت. نتیجه تحقیق نشان می دهد که مدل زوجی پژوهش دارای معادل بازده روزانه ای برابر0.0048 و نسبت شارپ 1.23 می باشد که در معیار نسبت شارپ در مقایسه با معامله زوجی بر حسب همجمعی و عملکرد بازار سودآورتر می باشد .

کلیدواژه‌ها


عنوان مقاله [English]

The profitability of pairs trading strategy based on linear state-space models and the Kalman filter in Tehran Stock Exchange

نویسندگان [English]

  • Mohammad mehdi barahimipour 1
  • sayyed mohammad reza davoodi 2
1 Master of Financial Engineering, Dehaghan Branch, Islamic Azad University, Dehaghan, Iran.
2 Assistant Professor, Department of Management, Dehaghan Branch, Islamic Azad University , Dehaghan, Iran .
چکیده [English]

Statistical arbitrage as one of the subsets of algorithmic trading refers to strategies that employ some statistical model or method to take advantage of what appears to be mispricing between assets while maintaining a level of market neutrality. One of these strategies is pair trading that implements on two related long-term(co-integration) financial assets. The pair trading strategy of the research is based on the description of the visible process, the remainder of the co-integration model in terms of an invisible mean reverting process. This representation is in a state-space model and solved by the Kalman filter approach and the time of buying and selling is calculated in terms of two probabilities of growth and fall. The profitability of pair trading strategy on 21 stocks from oil product index and basic metal index of Tehran Stock Exchange between 1390-1395 was evaluated according to return and Sharp ratio. The results of the research show that the research method has the daily returns of 0.0048 and Sharp 1.23, which is more profitable in comparison with the pair trading based cointegration and market performance but the average daily its return is in the second place after the co-integration method.

کلیدواژه‌ها [English]

  • pairs trading
  • Kalman filter
  • cointegration
  • quantitative strategies
  • statistical arbitrage
  • طادی، مسعود؛ آبکار، مجید؛ مطهری نیا، وحید. (1397). ارزیابی استراتژی معاملات زوجی با رویکرد فاصله‏ای در بورس اوراق بهادار تهران. دانش سرمایه‌گذاری, 7(26), 99-112.
  • فلاح پور، سعید؛ حکیمیان، حسن. (1396). بررسی عملکرد سیستم معاملات زوجی در بورس اوراق بهادار تهران: رویکرد هم انباشتگی و بررسی نسبت سورتینو. مهندسی مالی و مدیریت اوراق بهادار, 8(30), 1-17.
  • Bogomolov, T., (2011). Pairs trading in the land down under. In: Finance and Corporate Governance Conference.
  • Bogomolov, T., (2013). Pairs trading based on statistical variability of the spread process. Quantita-tive Finance 13 (9), 1411-1430.
  • Caldeira, J., Moura, G. V., (2013). Selection of a portfolio of pairs based on cointegration: A statis-tical arbitrage strategy. Available at SSRN 2196391.
  • M ., Krauss .C(2018) Pairs trading with partial cointegration, Quantitative Finance, 18:1, 121-138, DOI: 10.1080/14697688.2017.1370122
  • Do, B., Fa, R., 2010. Does simple pairs trading still work? Financial Analysts Journal 66 (4),83-95.
  • Do, B., Fa, R., (2012). Are pairs trading pro_ts robust to trading costs? Journal of FinancialResearch 35 (2), 261-287.
  • Gatev, E., Goetzmann, W. N., Rouwenhorst, K. G., (2006). Pairs trading: Performance of a relative-value arbitrage rule. Review of Financial Studies 19 (3), 797-827.
  • Jacobs, H., Weber, M., (2015). On the determinants of pairs trading pro_tability. Journal of Financial Markets 23, 75-97.
  • C, Pizzinga .Z & Jorge Zubelli (2016) A pairs trading strategy based on linear state space models and the Kalman filter, Quantitative Finance, 16:10, 1559-1573, DOI: 10.1080/14697688.2016.1164886
  • Stübinger.J, Bredthauer.J(2017), Statistical Arbitrage Pairs Trading with High-frequency Data. International Journal of Economics and Financial. 7(4), 650-662.
  • Wu, Y., (2013). Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds 19 (1), 12- 30.
  • Xie, W., Liew, R. Q., Wu, Y., & Zou, X. (2014). Pairs trading with copulas. Available at SSRN, 2383185.
  • Zeng, Z., Lee, C. G., (2014). Pairs trading: optimal thresholds and pro_tability. Quantitative Finance14 (11), 1881-1893.