محاسبه ارزش در معرض ریسک دنباله با استفاده از مدل EGARCH-Extreme Learning Machine و رویکرد صنعت بیمه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مدیریت مالی، دانشگاه تهران، تهران، ایران.

2 دانشجوی دکتری مالی گرایش بیمه، دانشگاه تهران، تهران، ایران.

3 دانشیار گروه مدیریت دولتی، دانشگاه تهران، تهران، ایران.

چکیده

یکی از مهم‌ترین روش‌های سنجش ریسک بازار استفاده از روش ارزش در معرض ریسک می‌باشد که نهادهای مالی نظیر بانک‌ها، بیمه‌ها و صندوق‌های سرمایه‌گذاری به طور گسترده‌ای از آن‌ها استفاده می‌نمایند. با مطرح شدن انتقادات معیار ارزش در معرض ریسک که در راس آن‌ها عدم تامین ویژگی زیر جمع‌پذیری است؛ تحقیقات به بررسی سنجه ارزش در معرض ریسک دنباله معطوف گردید و این سنجه در کمیته بازل در بانکداری و سیستم‌های توانگری مالیII اروپا و توانگری مالی سوئیس در صنعت بیمه مورد استفاده قرار گرفت؛ لذا در این پژوهش از این معیار جهت سنجش ریسک بازار سهام استفاده خواهد شد. با توجه به اینکه افق زمانی ریسک‌های یک بیمه‌گر بر خلاف بانک‌ها سالانه می‌باشد؛ لذا برای محاسبه ارزش در معرض ریسک دنباله از دو متد رویکرد واریانس-کوواریانس با بکارگیری مدل گارچ نمایی-ماشین فوق یادگیری برای پیش‌بینی نوسانات و استفاده از قاعده جذر زمان؛ و مدل شبیه‌سازی تاریخی با داده‌های فیلتر شده استفاده شده است. نتایج با استفاده‌ از بازده‌های روزانه شاخص کل بورس اوراق بهادار تهران برای سال‌های 1388 تا 1396 حاکی از دقت بیشتر مدل گارچ نمایی-ماشین فوق یادگیری و بکارگیری قاعده جذر زمان می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Calculating Tail Value at Risk Using a EGARCH-Extreme Learning Machine Model And The long-term forecast approach in the insurance industry

نویسندگان [English]

  • reza raei 1
  • Azam Honardoust 2
  • ezzatolah abbasian 3
1 Prof., Finance Department, University of Tehran, Tehran, Iran
2 Ph.D. Candidate of Finance-Insurance, Finance Department, University of Tehran, Tehran, Iran.
3 Finance Department, University of Tehran, Tehran, Iran.
چکیده [English]

One of the most important methods for market risk measurement is Value-at-risk (VaR) that financial institutions such as banks, insurers and investment funds use them extensively. VaR as a risk measure is heavily criticized for not being sub-additive, thus the researchers focuses on the assessment of the Tail value-at-risk (TVaR), and this measure is using on the Basel Committee on Banking and Solvency II of Europe and Swiss Solvency Test (SST). this paper focuses on TVaR to measure the risk of the stock market. Considering that the time horizon of the risks of an insurer unlike banks is annually. thus, to calculate the TVaR, we use of the two methods of the variance-covariance approach with the EGARCH-Extreme learning Machine model to volatility forecasting and use of square-root-of-time rule; and Filtered Historical simulation model. The results of using the daily returns of the Tehran Stock Exchange Index for 1388 to 1396 confirm that the EGARCH-Extreme learning Machine model with use of square-root-of-time rule performs better in TVaR calculation in terms of efficiency and accuracy.

کلیدواژه‌ها [English]

  • Market Risk
  • Annual Risk Estimation
  • TVaR
  • EGARCH-Extreme learning Machine model
  • Filtered Historical simulation
  • رادپور میثم، عبده تبریزی حسین (1388)، اندازه گیری و مدیریت ریسک بازار: رویکرد ارزش درمعرض ریسک. اول تدوین تهران: آگاه.
  • سارنج علیرضا (1396)، تجزیه و تحلیل ریسک بازار از تئوری تا عمل (به همراه کاربردها در MATLAB و Excel). اول تدوین تهران: نگاه دانش.
  • شهریار بهنام (1395)، مدل آیین نامه نحوه محاسبه و نظارت بر توانگری مالی موسسات بیمه (آیین نامه 96 شورای عالی بیمه)، تهران: طرح های پژوهشی سفارشی بیمه مرکزی ج.ا.ایران.
  • فلاح شمس میرفیض (1389)، بررسی مقایسه ای کارایی مدل ریسک سنجی و مدل اقتصادسنجی گارچ در پیش بینی ریسک بازار در بورس اوراق بهادار تهران. مجله مهندسی مالی و مدیریت پرتفوی، 1(5).
  • گرجی مهسا، سجاد رسول (1395)، «برآورد ارزش در معرض خطر چند دوره ای بر پایة روش های شبیه سازی و پارامتریک»، تحقیقات مالی، 18(1).
  • Acerbi, C. & Tasche, D., 2002. On the coherence of expected shortfall. Journal of Banking & Finance, Volume 26.
  • Artzner, P., Delbaen, F., Eber, J.-M. & Heath, D., 1999. Coherent Measures of Risk. Mathematical Finance, 9(3).
  • Cossette, H., Mailhot, M. & Marceau, É., 2012. TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts. Insurance: Mathematics and Economics, Volume 50.
  • Eling, M. & Pankoke, D., 2014. Basis Risk, Procyclicality, and Systemic Risk in the Solvency II Equity Risk Module. Journal of Insurance Regulation, 33(1).
  • Embrechts, P., Kaufmann, R. & Patie, P., 2005. Strategic Long-Term Financial Risks: Single Risk Factors. Computational Optimization and Applications, 32(1-2).
  • Huang, G.-B., Zhu, Q.-Y. & Siew, C.-K., 2006. Extreme learning machine: Theory and applications. Neurocomputing, Volume 70.
  • Kaufmann, R. & Patie, P., 2003. Strategic Long-Term Financial Risks:The One-Dimensional Case. Research Report, RiskLab, ETH Zurich.
  • Kellner, R. & Rösch, D., 2016. Quantifying market risk with Value-at-Risk or Expected Shortfall? Consequences for capital requirements and model risk. Journal of Economic Dynamics & Control, Volume 68.
  • Krause, J. & Paolella, M., 2014. A fast, accurate method for value-at-risk and expected shortfall. Econometrics, 2(2).
  • McNeil, A. J., Frey, R. & Embrechts, P., 2005. Quantitative Risk Management: Concepts, Techniques and Tools. 1nd ed. Princeton: Princeton University Press.
  • Pinjaman, S. B. & Aralas, S. B., 2015. the dynamic stock returns volatility and macroeconomic factors in Malaysia: a Sectoral Study. South East Asia Journal of Contemporary Business, Economics and Law, 8(3).
  • Righi, M. B. & Ceretta, P. S., 2015. A comparison of Expected Shortfall estimation models. Journal of Economics and Business, Volume 78.
  • Sandstrom, A., 2011. Handbook of Solvency for Actuaries and Risk Managers: Theory and Practice. New York: Taylor & Francis Group.
  • Zhang, H.-G.et al., 2017. Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model. Economic Modelling, Volume 67.