پیش‌ بینی‌ روند‌ روزانه‌ قیمت‌ سهام‌ با‌ استفاده‌ از‌ متن‌ کاوی‌ احساسات‌ کاربران‌ شبکه‌ اجتماعی‌ و‌ داده‌ کاوی‌ نماگرهای‌ تکنیکال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مدیریت مالی،گروه مدیریت مالی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 دانشیار و عضو هیئت علمی دانشگاه الزهرا، دانشکده علوم اجتماعی و اقتصادی، ده ونک ،تهران، ایران.

3 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران.

4 دانشیار، گروه مدیریت مالی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده

ا ین‌ پژوهش‌ به‌ پیش‌ بینی‌ روند‌ آتی‌ قیمت‌ سهام‌ در‌ بازه‌ کوتاه‌ مدت‌ روزانه‌ با‌ استفاده‌ از‌ تحلیل‌ نظرات‌ سرمایه‌ گذاران‌ در‌ شبکه‌ ی‌ اجتماعی‌ سهامیاب‌ می‌ پردازد. قابلیت‌ پیش‌ بینی‌ پذیری‌ بازارهای‌ سهام،‌ به‌ خاطر‌ دارا‌ بودن‌ یک‌ سیستم‌ پیچیده،‌ پویا‌ و‌ غیر‌ خطی‌ همواره‌ از‌ چالش‌ های‌ پژوهشگران‌ بوده‌ است‌ در‌ این‌ تحقیق،‌ برای‌ اولین‌ بار،‌ با‌ تحلیل‌ احساسات‌ نظرات‌ کاربران‌ و‌ ترکیب‌ آن‌ با‌ 22 نماگر‌ تکنیکال‌ به‌ کمک‌ سه‌ الگوریتم‌ درخت‌ تصمیم،‌ بیز‌ ساده‌ و‌ ماشین‌ بردار‌ پشتیبان‌ ،مدلی‌ با‌ دقت‌ 08/72 درصد‌ برای‌ پیش‌ بینی‌ جهت‌ حرکت‌ سهام‌ توسعه‌ یافت‌ و‌ به‌ پیش‌ بینی‌ روند‌ کوتاه‌ مدت‌ سهام‌ پرداخته‌ شد‌ بر‌ اساس‌ نتایج،‌ ماشین‌ بردار‌ پشتیبان،‌ عملکردی‌ بهتر‌ از‌ دو‌ الگوریتم‌ دیگر‌ از‌ خود‌ نشان‌ داد. همچنین‌ مشخص‌ شد‌ حجم‌ معاملات‌ روز‌ آتی‌ و‌ تعداد‌ نظر‌ ها‌ دارای‌ همبستگی‌ معناداری‌ است‌ و‌ نتایج‌ آزمون‌ علیت‌ گرنجر‌ نشان‌ داد‌ می‌ توان‌ برای‌ پیش‌ بینی‌ قیمت‌ سهام،‌ از‌ تجمیع‌ احساسات‌ روزانه‌ کاربران‌ نیز‌ بهره‌ جست.

کلیدواژه‌ها


عنوان مقاله [English]

عنوان مقاله / English Daily Stock Price Movement Prediction Using Sentiment text mining of social network and data mining of Technical indicators

نویسندگان [English]

  • Kamel Ebrahimian 1
  • ebrahim abbasi 2
  • Akbar Alam tabriz 3
  • Amir Mohammadzadeh 4
1 Phd-studentat Department of Management، Faculty of Management and Accounting، Qazvin Branch، Islamic Azad University، Qazvin، Iran
2 Associate professor at AL-Zahra University.
3 Professor at Department of Industrial Management، Management and Accounting Faculty، Shahid Beheshti University، Tehran، Iran.
4 Department of Industrial at Department of Management، Islamic Azad University Qazvin، Qazvin، Iran.
چکیده [English]

This study predicts the future movement of stock prices in the short term by using the analysis of investors' opinions on the social network. The predictability of stock markets, due to having a complex, dynamic and nonlinear system that it has always been one of the challenges for researchers. In this research, for the first time, we developed a model with 72.08%accuracy for predicting stock movement and predicting the trend by analyzing the feelings of users' opinions and combining it with 20 technical indicators and we use three data mining algorithms include decision tree, Naïve Bayes and Support Vector Machine. According to the results, the support vector machine showed better performance than the other algorithms. It was also found that the next day trading volume and the number of comments have a significant correlation and the results of Granger causality test showed can be used to predict stock price and also it took advantage of the aggregation of users' daily emotions.

کلیدواژه‌ها [English]

  • Stock price forecasting
  • classification algorithms
  • emotion analysis
  • Granger causality
  • Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, Vol.38, no. 1, pp. 34-105.
  • Geweke, J. (1984). Inference and causality in economic time series models. Handbook of econometrics, Vol.2, pp.1101-1144.
  • Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, pp.424-438.
  • Bollen، H. Mao، and X. Zeng. (2011). Twitter mood predicts the stock market. Journal of Computational Science.
  • Lee, H., Surdeanu, M., MacCartney, B., & Jurafsky, D. (2014, May). On the Importance of Text Analysis for Stock Price Prediction. In LREC (Vol. 2014, pp. 1170-1175).
  • Mittal، Anshul، and Arpit Goel. (2012). Stock Prediction Using Twitter Sentiment Analysis. Stanford University، Available online: http://cs229.stanford.edu/proj2011/GoelMittalStockMarketPredictionUsingTwitterSenti
  • M، Didehkhani.H،Dameghani.KK، Abbasi.E. (2020).” Investigating the Predictability of Starting Point and Ending Short-Term Trend of Stock Price Using the Bayesian Likelihood Network”، Journal of Financial Management Strategy، Vol. 8، No. 28 Spring
  • Schumaker، P.، & Chen، H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZF in text system. ACM Transactions on Information Systems،27(2)
  • V. (1995). "The Nature of Statistical Learning Theory"، New York، NY: Springer.
  • Vatanparast Mohammadreza،Asadi masoud، Mohammadi Shaban، Babaei abbas .2019.Stock price prediction based on LM-BP neural network and over-point estimation by counting time intervals: Evidence from the Stock Exchange. FINANCIAL   summer، Volume 10 ، Number 39; Page(s) 193 to 218.