نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانش آموخته دکتری حسابداری، گروه حسابداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.
2 دانشیار و عضو هیات علمی، گروه حسابداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.
3 استاد یار و عضو هیات علمی ، دانشکده مهندسی کامپیوتر و فناوری اطالعات، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Purpose of this corpus is too optimize and predict required cash for atm devices among KESHAVARZI bank branches with in QAZVIN Province, with artificial intelligence algorithm depending on risk appetite. To achieve this purpose 2 years of daily transaction belonging to KESHAVARZI BANK branches data has been used. Which data were indicating balance, financial daily book, treasury fund and transactions and ATM transactions. The procedure of cleaning, standardization was done before the data sent to linear regression algorithms, the algorithms used in this approach are linear regression, lasso regression and ridge regression. After calculating MSE error, algorithm chose the best model with less MSE error using python programming language Also Jupiter notebook has been used as IDE This research indicates that there are a reverse meaningful relationship between cash balance and risk appetite and opportunity cost. Also a straight meaningful relationship between daily cash flow and debt-credit (which has been provided by the bank and costumers). Features and data that has been used for training an AI model revaluate again with a different values that has been also generated by AI in next step.
Results shows that using artificial intelligence can predict daily cash needs with 95% accuracy with an acceptable error.
کلیدواژهها [English]