نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری مدیریت مالی - دانشگاه آزاد اسلامی، واحد امارات متحده عربی
2 استادیار گروه مدیریت مالی، دانشکده مدیریت، دانشگاه آزاد اسلامی واحد الکترونیکی، تهران، ایران
3 دانشیار دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران،ایران
4 دانشیار دانشکده مدیریت و اقتصادواحدعلوم وتحقیقات تهران دانشگاه آزاداسلامی
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The purpose of this study was to design a new model for predicting the Tehran Stock Exchange index using pattern recognition in a combination of hidden Markov model and artificial intelligence. The present study is an applied type and mathematical analytical method. Its location is the Tehran Stock Exchange and during the years 2010 to 2020. Findings showed that the prediction error rate with artificial neural network has a higher accuracy than Markov's hidden model. Also, the prediction error of the hybrid model is much lower than the other two models for predicting the total stock index of Tehran Stock Exchange, so it has higher accuracy for forecasting stocks. According to the MAPE index, the hybrid model method could improve the predictive power of the artificial neural network by 0.044% and also improve the predictive power of the hidden Markov model by 0.70%.
کلیدواژهها [English]