تحلیل علیت گرنجر در الگوهای میانگین جهت سنجش k مین وقفه همبستگی متقابل بین باقیمانده‌های استاندارد بازده و حجم معاملات در شرایط بحران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه حسابداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 استادیار، گروه مدیریت، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

3 گروه حسابداری، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

این مطالعه به بررسی تحلیل علیت گرنجر در الگوهای میانگین جهت سنجش k مین وقفه همبستگی متقابل بین باقیمانده‌های استاندارد بازده و حجم معاملات در دوره‌ بحران پرداخته است. بدین منظور بر اساس داده‌های روزانه از فروردین‌ماه 1399 الی مهرماه 1400 ابتدا نقاط شکست ساختاری تعیین‌شده و سپس به بررسی رابطه بین حجم معاملات روزانه و تغییرات قیمت شاخص بورس اوراق بهادار تهران با استفاده از الگوی GARCH-ARMA پرداخته شد. در نهایت به بررسی علیت در میانگین بین بازده و حجم معاملات برای هر زیر دوره پرداخته شد. نتایج نشان داد هنگامی‌که قیمت‌ها در دوره بحران به‌شدت کاهش می‌یابد، فعالان بازار تمایل دارند از حجم معاملات گذشته برای پیش‌بینی بازده فعلی استفاده کنند. همچنین نتایج نشان داد زمانی که حرکت صعودی قیمت در دوره بعد از بحران وجود دارد، مشاهده می‌شود که همبستگی‌ها از تأخیر 2 تا 20 معنی‌دار است. این مشاهدات نشان می‌دهد که علیت-در-میانگین بین هر دو سری به‌طور نامتقارن پس از دوره بحران رخ می‌دهد. چنین رفتار نامتقارنی از دو منظر از فرضیه ناهمگونی معامله‌گران پشتیبانی می‌کند، اولا، درجه همبستگی متقابل معنی‌دار بین باقیمانده‌های استانداردشده هر دو سری در بالاترین وقفه قبل از بحران قوی‌تر از بعد از بحران است. دوما، بازه زمانی که حجم معاملات گذشته با بازده فعلی مرتبط شود، پس از بحران طولانی‌تر می‌شود. از نتایج تحقیق می توان در پیش بینی قیمت سهام در مقطعی که با سقوط بازار سهام و بروز پدیده های رفتاری به ویژه احساسات منفی بازار مواجه هستیم استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Granger causality analysis in mean patterns to measure the number of lags of the cross-correlation between the standard residuals of returns and trading volume in crisis situation

نویسندگان [English]

  • Mohammad Hasan Saleh 1
  • Fazel Mohammadi Nodeh 2
  • mojtaba maleki choobari 3
1 Department of Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Assistant Professor, Department of Management, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 Department of accounting, Lahijan Branch, Islamic Azad University, Lahijan, Iran
چکیده [English]

This study investigates the analysis of Granger causality in mean patterns to measure the number of lags of the cross-correlation between the standard-residuals of returns and the volume of transactions during the crisis period. For this purpose, based on daily data from April 2020 to April 2021, structural breakpoints were first determined and then the relationship between the volume of daily transactions and price changes of the Tehran Stock Exchange was investigated using the GARCH-ARMA model. Finally, the causality was investigated in the average between returns and volume of transactions for each sub-period. The results showed when the prices fall sharply during the crisis period, market participants tend to use the volume of past transactions to predict current returns. Also, the results showed when there is an upward price movement in the post-crisis period, it is observed the correlations are significant from lag 2 to 20. These observations suggest causality-in-the-mean between both series occurs asymmetrically after the crisis period. Such asymmetric behavior supports the trader heterogeneity hypothesis from two perspectives, firstly, the degree of significant cross-correlation between the standardized residuals of both series is stronger in the highest interval before the crisis than after the crisis. Second, the time frame for past trading volume to correlate with current returns becomes longer after the crisis. The results of the research can be used to predict stock prices at a time when we are facing the fall of the stock market and the emergence of behavioral phenomena, especially negative market sentiments.

کلیدواژه‌ها [English]

  • Trading volume
  • Stock returns
  • Granger Causality
  • Average Causality
  • اسلامی بیدگلی، سعید و شعبان پور فرد، پژمان (1395). رابطه حجم معاملات و اجزای آن با بازده؛ مطالعه موردی در بورس اوراق بهادار تهران با تمرکز بر معاملات حین روز و حذف اثر Uشکل. چشم انداز مدیریت مالی، 6(14)، 45-63.
  • امام وردی، قدرت اله، جعفری، سیده محبوبه (1398). اثر بحران های مالی بر انتقال تکانه و سرریز نوسان میان بازارهای مالی توسعه یافته و ایران. اقتصاد مالی، 13 (47)، 84-63.
  • آلودری، قاسم، مقدم، جواد، رضوانی فرد، سعید، مقدم، مهدی (1390)، بررسی ارتباط همزمان و پویای حجم معاملات و بازده سهام با استفاده از مدل های خودرگرسیون برداری، فصلنامه بورس اوراق بهادار، 15، 41-27.
  • حاتمی، فرشاد (1394)، بررسی رابطه بین بازده سهام و حجم معاملات در بخش بانکی، پایان نامه جهت دریافت مدرک کارشناسی ارشد حسابداری، دانشگاه شهید چمران اهواز
  • زمانیان، غلامرضا، جلالی، ام البنین، کردی تمندانی، علی (1396). رهیافت مدل احتمال مبادله آگاهانه در بررسی اثر عدم‌تقارن اطلاعات بر بازده سهام و حجم معاملات در شرکت‌های منتخب بورس اوراق بهادار تهران. اقتصاد مالی، 11 (41)، 43-66.
  • عباسی، ابراهیم، دهقان نیری، لیلا و پورداداش مهربانی، نازیلا (1395). بررسی رابطۀ بین حجم معامله، بازده سهام و نوسان بازده در زمان مقیاس‏های مختلف در بورس اوراق بهادار تهران. مدیریت دارایی و تامین مالی، 4(4)، 1.
  • مدرس، احمد، لیلی پور، کامران و حمشی، محسن (1397). تأثیر اعلام سهام شناور بر حجم معاملات، نوسان‌پذیری و بازده سهام. پژوهش های حسابداری مالی و حسابرسی، 10(39)، 219-236.
  • میرزاده، فاطمه، سعیدی، علی، حیدر زاده هنزائی، علیرضا، خدایی وله زاقرد، محمد. (1401). تاثیر حجم معاملات بر ناهمگرایی قیمت قراردادهای آتی در بورس کالای ایران. فصلنامه بورس اوراق بهادار، 15(57)، 349-374.
  • نجار زاده، رضا، زیودار، مهدی (1385)، بررسی رابطه تجربی بین حجم معاملات و بازده سهام در بازار بورس اوراق بهادار تهران، فصلنامه پژوهشهای اقتصادی، سال ششم، شماره دوم
  • Alvarez, E., Brida, G., Moreno, L. et al. The dynamical relation between price changes and trading volume. Qual Quant (2023). https://doi.org/10.1007/s11135-022-01605-4
  • Ardalankia, Jamshid., Osoolian, Mohammad., Haven, Emmanuel., Jafari, G. Reza, (2020), Scaling features of price–volume cross correlation,Physica A: Statistical Mechanics and its Applications, Volume 549, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2019.124111
  • Aznaei, S., (2012). The Relationship between Trading Volume with Price Volatility and Market Quality. Tehran, Alzahra University.
  • Back, K., & Baruch, S. (2007). Working orders in limit-order markets and floor exchanges. Journal of Finance, 62(4), 1589–1621.
  • Chan, K., Fong, W. M., (2000). Trade size, order imbalance, and the volatility-volume relation. Journal of Financial Economics, 57(2), 247–273.
  • Connolly, R., Stivers, C. (2003). Momentum and reversals in equity-index returns during periods of abnormal turnover and return dispersion. Journal of Finance 58(4), 1521-1556.
  • Easley, D., Kiefer, N. and O’Hara, M. (1997a). The information content of the trading process, Journal of Empirical Finance, 4(2), 159-86.
  • Gebka, B. (2005), Dynamic volume-return relationship: evidence from an emerging capital Applied Financial Economics 15(14), 1019-1029.
  • Giot, P., Laurent, S., &Petitjean, M. (2010). Trading activity, realized volatility and jumps. Journal of Empirical Finance, 17(1), 168–175.
  • Jones, C.M., Kaul, G., Lipson, M.L., (1994). Transactions, volume, and volatility. Review of Financial Studies, 7(4), 631–651.
  • Karpoff, J. M. (1987) The relation between price changes and trading volume: a survey. Journal of Financial and Quantitative Analysis 22(1), 109-126
  • Li, J., & Wu, C. (2006). Daily return volatility bid-ask spreads, and information flow: Analyzing the information content of volume. Journal of Business, 79(5), 2697–2739.
  • Liu, X., Liu, X., Liang, X. (2015). Information-driven trade and price-volume relationship in artificial stock markets. Physica A: Statistical Mechanics and its Applications 430, 73-80.
  • Llorente, G., Michaely, R., Saar, G., Wang, J. (2002). Dynamic volume-return relation of individual stocks. Review of Financial Studies 15(4), 1005-1047.
  • Moosa, I. A., Silvapulle, P., Silvapulle, M. (2003). Testing for temporal asymmetry in the pricevolume Bulletin of Economic Research 55(4), 373-389.
  • Ozsoylev, H. N., &Takayama, S. (2010). Price, trade size, and information revelation in multi-period securities markets. Journal of Financial Markets, 13(1), 49–76.
  • Stickel, S. E., Verrecchia, R. E. (1994). Evidence that trading volume sustains stock price Financial Analysts Journal 50(6), 57-67.
  • Szetela, B., Mentel, G., Bilan, Y. et al. The relationship between trend and volume on the bitcoin market. Eurasian Econ Rev 11, 25–42 (2021). https://doi.org/10.1007/s40822-021-00166-5
  • Tersvirta, T. (1998). Modelling Economic Relationship with Smooth Transition Regressions, In Giles, D.E.A, Ullah, A. (Eds.), Handbook of Applied Economic Statistics. Marcel Dekker, New York, 507-552.
  • Wang, J. (1994). A model of competitive stock trading volume. Journal of Political Economy 102(1), 127-168.
  • Xu, X. E., Wu, C. (1999). The intraday relation between return volatility, transactions, and International Review of Economics and Finance 8(4), 375-397.
  • Xua, Xiaoqing Eleanor., Wu, Chunchi (1999), The intraday relation between return volatility, transactions, and volume, International Review of Economics and Finance, 8(4), 375-397.