مقایسه کارآمدی مدل های ARIMA و ARFIMA برای مدل سازی و پیش بینی شاخص قیمت تهران (TEPIX)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه تهران

2 دانش آموخته ی کارشناسی ارشد مدیریت بازرگانی- مالی دانشگاه سیستان و بلوچستان (مسئول مکاتبات)

3 دانش آموخته ی کارشناسی ارشد مدیریت بازرگانی- مالی دانشگاه سیستان و بلوچستان

4 کارشناس ارشد رشته مدیریت بازرگانی- مالی، عضو باشگاه پژوهشگران جوان، دانشگاه آزاد اسلامی واحد زاهدان

چکیده

این مقاله به بررسی عملکرد پیش بینی مدل های ARIMA و ARFIMA با استفاده از داده‌های روزانه بازده شاخص کل سهام تهران در بازه زمانی 04/09/1380 تا 09/09/1390 می پردازد. در این راستا جهت تخمین پارامتر d و دیگر پارامترها، از روشNLS  در بسته نرم‌افزار Oxmetric/pcgive  استفاده شد و پس از مقایسه نتایج مدل­های تحقیق؛ مدل ARFIMA بر اساس معیار AIC مدلی برتر در مدل سازی TEPIX مشخص گردید. همچنین از میان براوردهای پیش بینی، روش های پیش بینی ساده را برای تخمین پیش بینی آزمون می کنیم. از مقایسه دقت پیش بینی مدل های مذکور توسط معیارهای پیش بینی مانند MAPFE و RMSFE و فواصل اطمینانی که ارزش های واقعی در آن جای گرفته اند، می توان استنباط کرد که اولاً، تفاوت عملکرد بهتر پیش بینی مدل حافظه بلند مدت ARFIMA نسبت به مدل ARIMA  بسیار جزئی است و ثانیاً، ناکارامدی مدل ARFIMA در پیش بینی بازار سرمایه تهران کاملاً مشهود است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Efficiency compared to ARIMA and ARFIMA models for modeling and prediction of Tehran Price Index (TEPIX)

نویسندگان [English]

  • Habibollah salarzehi 1
  • Mansoor kasha kasha 2
  • Seyed-Hasan Hosseini 3
  • Mohammad Donyaei 4
1 Sistan & Baluchestan University, Zahedan, Iran
2 MSc in Financial Management, Sistan & Baluchestan University, Zahedan, Iran
3 MSc in Financial Management, Sistan & Baluchestan University, Zahedan, Iran
4 Department of Management, Young Researchers Club, Zahedan Branch, Islamic Azad University
چکیده [English]

This article examines the forecast performance of ARFIMA and ARIMA models using data on daily stock price index of Tehran in period 25/11/2001 to 30/11/2011. To estimate the d parameter and other parameters, the NLS method in the software package Oxmetric / pcgive was used. After comparing the results of research models, ARFIMA models based on AIC, the model was found superior in modeling TEPIX. Also we use naive methods for estimating the prediction. Comparing the accuracy of the prediction models by criteria such as MAPFE and RMSFE and confidence intervals of  the real values, we can deduce that the first Performance difference between the predicted long-term memory ARFIMA model is very minor compared to the ARIMA model And Secondly, inefficient ARFIMA model in Tehran capital market forecast is quite evident.

کلیدواژه‌ها [English]

  • Forecast
  • Return
  • Autoregressive Integrated Moving Average
  • Autoregressive fractionally integrated moving average