نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار حسابداری، دانشگاه اصفهان
2 دانشجوی دکترای مدیریت مالی ، آموزشکده فنی و حرفهای سما، دانشگاه آزاد اسلامی، واحد اندیشه (مسئول مکاتبات)
3 کارشناسی ارشد حسابداری، دانشگاه اصفهان
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Expectations about earning have significant effects on managers and investors’ decisions. Today, one of the measures that are takenin to consideration as an indicator ofcompanies’profitability is the concept of earningpershare.Also earningper share has major effectson stock price of companies. Hence, forecastingearning per shareisof great importance forbothinvestorsandmanagers. The aimof thisstudy is to modelearning pershareforecast of listed companies in Tehran Stock Exchange(TSE) by using the combination ofartificial neural networksand particle swarm optimizationalgorithmbased onunivariate andmultivariate models. To do this,the data of114 companies among the existing listed onesinTehran Stock Exchange was usedduring1380-1389(2001-2010).The results showed that univariate model with 78.5% accuracy and multivariate models with 91.7% accuracy, forecast earning per share.
کلیدواژهها [English]